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Abstract. White light, which contains polychromic visible components, affects the rhythm of organisms and
has the potential for advanced applications of lighting, display, and communication. Compared with traditional
incandescent bulbs and inorganic diodes, pure organic materials are superior in terms of better compatibility,
flexibility, structural diversity, and environmental friendliness. In the past few years, polychromic emission has
been obtained based on organic aggregates, which provides a platform to achieve white-light emission.
Several white-light emitters are sporadically reported, but the underlying mechanistic picture is still not fully
established. Based on these considerations, we will focus on the single-component and multicomponent
strategies to achieve efficient white-light emission from pure organic aggregates. Thereinto, single-component
strategy is introduced from four parts: dual fluorescence, fluorescence and phosphorescence, dual
phosphorescence with anti-Kasha’s behavior, and clusteroluminescence. Meanwhile, doping, supramolecular
assembly, and cocrystallization are summarized as strategies for multicomponent systems. Beyond the
construction strategies of white-light emitters, their advanced representative applications, such as organic
light-emitting diodes, white luminescent dyes, circularly polarized luminescence, and encryption, are also
prospected. It is expected that this review will draw a comprehensive picture of white-light emission from
organic aggregates as well as their emerging applications.
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1 Introduction
Light has illuminated the world and promoted the development
of society, especially since Thomas Edison invented incandes-
cent lightbulbs in 1879. Natural sunlight contains different
wavelengths of light within the visible spectrum and finally

shows white color. It affects the metabolism of humans and
controls the circadian rhythm of organisms.1 To mimic natural
sunlight, steps on the exploration of white-light luminescent
materials have never stopped. They have exhibited a wide range
of lighting applications in illumination, industry automotive,
information communication, and luminescent dyes. Compared
with traditional incandescent lightbulbs and inefficient mercury-
discharge-based fluorescent lamps, solid-state sources such as
LEDs exhibit advantages such as high efficacy, small size, color
stability, controllability, and variability, thus attracting increasing
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attention from scientists and industries.2–4 Being different from
traditional light sources with monochromatic light, white-light
emitters should produce polychromatic lights simultaneously,
which usually requires them to have di-, tri-, or tetrachromatic
sources.2,3,5 For example, white-light LEDs with high brightness
and durability could be realized by synergistically combining tra-
ditional LED with three primary colors (e.g., blue InGaN LED,
green InGaN LED, and red GaAlAs LED).6 Other strategies
based on ultraviolet/blue LED plus phosphors have been success-
fully utilized.7–9 The past several decades have witnessed a pros-
perous era in the generation and commercialization of white-light
emitters based on inorganic semiconductor p-n junction diodes
and phosphors.

It is acknowledged that some organometallic aggregates are
also good candidates for luminescence and realizing white-light
emission with high efficiency.10,11 However, compared with in-
organic and organometallic materials with rare-earth elements,
pure organic compounds show better processability, flexibility,
structural diversity, environmental friendliness, etc., which
endows them with promising applications in advanced smart
devices.12 However, many organic luminophores suffer the
severe aggregation-caused quenching (ACQ) effect, which
strongly impedes their practical applications in the aggregate
and solid states.13,14 Meanwhile, most of them are mono-
chromatic, so it is difficult to realize white-light emission from
single-component organic emitters, which require intricate
multilayered device fabrications. The above hindrances block
the generation and utilization of white light from organic lumi-
nescent materials for decades. In 2001, Tang et al. coined the
photophysical concept of aggregation-induced emission (AIE)
which brought a new perspective for molecular behavior in
the aggregate state.15 AIE refers to the photophysical phenome-
non that some certain molecules are nonemissive in the isolated
solution state but would show strong photoluminescence (PL) in
the aggregate or solid state.16–18 In the past two decades, AIE has

motivated much research on aggregate science from fundamen-
tal mechanisms to advanced applications and promoted the
diagram shift from molecular science to aggregate science.19–25

The emergences and changes originating from aggregation are
beyond enhanced PL intensity. Some new phenomena that do
not exist in the single molecule emerge in the aggregate state,
such as room-temperature phosphorescence (RTP), clusterolu-
minescence, and mechanoluminescence.16,26 From this consider-
ation, organic aggregates showing the AIE effect are also
promising to provide a new insight on pursuing white-light
emission in terms of strategies and applications.27–29 Some lumi-
nogens with the AIE effect (AIEgens) with flexible structures
can emit polychromatic colors simultaneously in the aggregate
state, achieving the requirements for white light. In addition, the
solid-state form and high efficiency of AIEgens are beneficial
to practical applications.30–33 However, only a few compounds
were reported as organic white-light emitters, and few general
methods or strategies are constructed as the guidance for
achieving solid-state white light.34 Hence, it requires in-depth
understanding of the principles and mechanisms behind photo-
physical behaviors of organic aggregates to generate white-light
emission.

In this review, from the mechanistic perspective, we focus on
the fundamental strategies to achieve efficient white-light emis-
sion from pure organic aggregates, which are summarized from
single-component and multicomponent systems, respectively
(Fig. 1). Single-component strategies include dual fluorescence
from two singlet states, fluorescence and phosphorescence, dual
phosphorescence with anti-Kasha’s behavior, and clusterolu-
minescence. Subsequently, doping, supramolecular assembly,
and cocrystallization are introduced as strategies for multi-
component systems. Finally, some emerging applications of
organic emitters with white-light emission are highlighted. It is
expected that this review will draw a comprehensive picture for
white-light emitters of organic aggregates.

Fig. 1 General scheme of single-component and multicomponent strategies to achieve white-light
emission from organic aggregates. Ex., excitation; Fluo., fluorescence; Phos., phosphorescence;
Em., emission; ISC, intersystem crossing.
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2 Single-Component Strategy
Mixing two or three compounds with primary colors together
is a simple method to construct multicolor emission with the
merits of high-quality white light, high efficiency, and mature
fabrication techniques. However, its performance is like a
double-edged sword that brings the problems of phase separa-
tion, high casting cost, and unstable emission color. In contrast,
single-molecule systems with polychromic emission are ideal
candidates to achieve white-light emission. Several single-
molecule white-light emitters have been reported in solution
conditions.35–37 With the help of the AIE effect, it is possible
for organic luminogens to exhibit efficient white-light emission
in the aggregate or solid state with high color quality, stability,
and controllability. In this section, various reported design prin-
ciples and mechanisms to achieve white-light emission from
single-component organic aggregates will be discussed.

2.1 Dual Fluorescence from Two States

When one molecule is excited to the higher excited state, it will
quickly relax to the lowest excited state through internal

conversion (IC) and then return to the ground state through com-
petitively radiative and nonradiative decay channels, which is
illustrated by Kasha’s rule.38 For this reason, most molecules
only have one fluorescent emissive state and show monochro-
mic emission. However, the structural features of some mole-
cules enable two or more emissive states to be presented and
balanced at the same time, which realize polychromic emission
from two or more fluorescent states following Kasha’s rule.
According to the region of electron distribution before and after
excitation, the common origins of fluorescence are usually di-
vided into locally excited (LE) and charge transfer (CT) states.
The former refers to the same electron distribution after excita-
tion, while the latter indicates an obvious region change of elec-
tron distribution. Here, three common cases, namely, LE and
CT, dual LE, and dual CT fluorescence for white-light emission
are introduced (Fig. 2). It should be noticed that dual fluores-
cence can also be generated from some special molecules with
excited-state intramolecular proton transfer,42–44 structural iso-
merization,45 and excimers,46 which have been summarized by
some reviews.34,47

When two chromophores that do not show obvious electron-
donating or electron-withdrawing features are connected, they

Fig. 2 Schematic illustration of three types of dual emissions from two fluorescent states. LE,
locally excited; CT, charge transfer. (a) (Upper panel) The molecular conformations and photo-
physical behaviors of DPAC-Tri(o1,2) in a low-viscosity and high-viscosity solution/solid state;
(lower panel) PL spectra of DPAC-Tri(o1,2) in different states of polytetrahydrofuran (polyTHF);
(inset) fluorescent photo of DPAC-Tri(o1,2) (concentration: 10−5 mol/L) in solidified polyTHF with
an Mn of 2000 Da. The excitation wavelength is 365 nm. Figures are reproduced with permission
from Ref. 39. (b) (Upper panel) Chemical structure, crystal packing, and calculated HOMO-LUMO
distribution of o-CP; (lower panel) PL spectra and photo of a white LED based on o-CP. Figures
are reproduced with permission fromRef. 40. (c) (Upper panel) Chemical structure, crystal packing
of CPzPO; PL spectra and photo of CPzPO before and after grinding. Figures are reproduced with
permission from Ref. 41.
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may emit two independent lights from their corresponding
LE states after photoexcitation. For example, a typical saddle-
shaped compound, N;N-disubstituted-dihydrodibenzo[a,c]
phenazines (DPAC), and a typical AIEgen triphenylethylene
(TPE) were utilized to construct the compound DPAC-
Tri(o1,2) [Fig. 2(a)].39 The moiety of DPAC was flexible so that
it displayed planarized conformation in the ground state and
became bent in the excited state, which was insusceptible to
the surrounding environment. However, the other part of the
TPE exhibited dynamic intramolecular rotation in the isolated
state and restricted intramolecular rotation in the aggregate state.
Therefore, in a low-viscosity solution, organ-red emission from
the DPAC part was observed while another blue light from the
TPE was quenched. In contrast, bright white light was achieved
from dual LE emission in the high-viscosity solution or solid
state, which contained both orange-red and blue colors from
two separated fluorogens, respectively. Furthermore, polytetra-
hydrofuran (polyTHF) was utilized as a “solvent” to powerfully
restrict intramolecular motion. Hence, the blue emission with a
wavelength of 435 nm was strongly enhanced when the state of
the polyTHF changed from liquid to solid. A solid model with
two letters of “CC” was made accordingly with a cold-white
color and an International Commission on Illumination (CIE)
coordinate of (0.28, 0.25) [Fig. 2(a)].

If there is an equilibrium between parent LE and CT states,
dual fluorescence can also be achieved. Hence, it requires a
moderate strength between a donor–acceptor (D-A) pair to bal-
ance the strength of LE and CTand further realize white light.48–50

The first example of such a dual-emission emitter was originally
reported in a donor–acceptor compound named 4-N;N-dime-
thylaminobenzonitrile in 1959.51 Tu et al. reported a single-
component white-light emitter o-CP where the phenanthrene
acted as the donor and the carborane group played as the ac-
ceptor [Fig. 2(b)].40 Due to the weak electron-withdrawing abil-
ity of the carborane unit, one blue emission from the LE state
located at phenanthrene and the other yellow emission with
the CT feature were achieved simultaneously in the crystalline
phase. In addition, with the help of multiple intermolecular
hydrogen bonds (Cage-H⋅⋅⋅π ), intramolecular motions and non-
radiative decay of o-CP were suppressed in the solid state,
resulting in high-purity white light with an absolute quantum
yield of 46% and a CIE coordinate of (0.33, 0.36). Awhite-light
emitting device was also fabricated with a brightness as high as
1.4 × 104 cdm−2 under a low operating voltage of 4.0 V.

Further increasing the strength of the electron-donating and
electron-withdrawing abilities between a D-A pair, the emission
from the CT state becomes dominant without any LE feature.52,53

Specifically, polychromic emission from CT states may be ob-
served if two or more different D-A pairs are presented. Chi et al.
reported an asymmetrical compound CPzPO based on diphenyl-
sulfone, diphenylketone, and diphenylphosphine oxide, which
showed a donor–acceptor–acceptor conformation [Fig. 2(c)].41

It showed only one blue emission (∼460 nm) in a dilute solu-
tion, which was generated from the intramolecular CT between
phenothiazine and ketone moieties. However, apart from the
blue emission, its crystal displayed another low-energy emission
band at 568 nm. Through single-crystal analysis, excitation
spectrum measurement, and blending and grinding experiments,
the long-wavelength band was assigned to the intermolecular
CT from phenothiazine moiety to ketone moiety with the assis-
tance of intermolecular hydrogen bonds (-CH⋅⋅⋅O = 2.627 Å).
As a result, CPzPO emitted pure white color with a CIE

coordinate of (0.31, 0.32) assisted by synergistic intramolecular
and intermolecular CT states.

2.2 Fluorescence and Phosphorescence

Traditionally, phosphorescence of pure organic molecules has
been disregarded since it is too weak to be observed at room
temperature and triplet excitons are easily quenched. According
to the Jablonski diagram, to achieve RTP with high efficiency,
efficient intersystem crossing (ISC) from singlet to triplet states,
suppressed nonradiative decay or quenching processes of
the triplet states, and fast phosphorescent decay from triplet
to ground states are prerequisites.54 With the development of
aggregate science, research on RTP from organic aggregates
rapidly developed with various systems, strategies, and multiple
functionalities.55–58

Accompanying fluorescence from the singlet state, the emis-
sion from the triplet state as phosphorescence provides another
focus on white light from single-component organic aggregates.
The key to this strategy is to directly manipulate the strength of
ISC and further adjust the equilibrium between singlet and trip-
let excitons after photoexcitation.59,60 Heavy atoms are usually
used to enhance the weak ISC ability of organic molecules
to promote triplet excitons.61,62 For instance, TPO-Br was suc-
cessfully synthesized that showed blue fluorescence and strong
yellow RTP in the solid state (Fig. 3).63 The pure TPO-Br film
prepared by spin-coating exhibited high-quality white light with
a CIE coordinate of (0.32, 0.33) [Fig. 3(b)], which was very
close to the pure white color of (0.33, 0.33) defined by CIE
in 1931.64 Single-crystal structure analysis suggests that, apart
from twisted phenyl rings around the oxazole core, two Br
anions closely located on both sides of the positively charged
oxazoliums with distances of 3.494 and 3.601 Å, respectively
[Fig. 3(c)]. This conformation and anion–πþ interactions
blocked the strong intermolecular interactions and promoted
efficient emission in the aggregate state. The small energy
difference between S1 and T3∕T4 states (0.18 eV) and large
spin-orbit coupling assisted by the external heavy-atom effect
of Br anions ensured the strong ISC for RTP [Fig. 3(d)]. As a
result, the balance between fluorescence and phosphorescence
produced the dual emission and final white-light emission.

The strength of ISC and equilibrium between the singlet and
triplet states are also indirectly controlled by other methods,
such as oxidation degree of thianthrene,65 intermolecular
hydrogen bonding,66 halogen bonding,67,68 one-dimensional
π − π stacking,69,70 and oxygen/nitrogen heteroatom with ðn; π�Þ
transition.71,72 These examples provide prosperous methods to
modulate excited-state features and harvest efficient white-light
emission from pure organic aggregates.

2.3 Dual Phosphorescence with Anti-Kasha’s Behavior

A rare but interesting phenomenon is that molecules can emit
light from a higher excited state (e.g., Sn and Tn, n ≥ 2), which
violates Kasha’s rule, and was originally discovered in azulene
in 1955.73 In general, after being excited to the higher excited
state, excitons quickly relax to the lowest excited state (S1 or T1)
through IC.74,75 Hence, it is scarce to obtain emissions from
higher excited states. There are a few studies that reported
and strictly verified this unusual anti-Kasha’s emission from
multiple excited singlet states.76,77

As a special case to traditional molecules with one emission
peak of RTP, pure phosphorescence with anti-Kasha’s behavior
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provides more complicated photophysical processes and mecha-
nistic value.78 Dual emission of phosphorescence also indicates
the possibility to obtain white-light emission from single-
component systems. In principle, there are two ways to achieve
such anti-Kasha’s phosphorescence. (1) Large energy difference
between the higher excited state and T1 so the higher triplet state
does not involve the T1, which suppresses the rate of IC. (2) The
higher triplet state and T1 are vibronically mixed or thermally
equilibrated with energy proximity or small energy difference,
and the radiative rate from the higher triplet state is much faster
than that from T1.

79,80 As a result, dual phosphorescence can be
achieved from two triplet states. With the help of the carbonyl
group and heavy halogen atom to greatly strengthen ISC, Tang
et al. studied a pure organic compound, ClBDBT, as the first
example of white-light emitter showing pure phosphorescence
with anti-Kasha’s behavior.81 As shown in Fig. 4(a), the powder
of ClBDBT showed white and yellow colors with and without
UV illumination, respectively. The PL spectra indicated two
emission peaks located at 467 and 551 nm with a white-light
CIE coordinate of (0.33, 0.35) [Figs. 4(b) and 4(c)]. To verify
the origin of the dual emission, variable-temperature lifetime
was investigated. The blue and yellow emission showed

lifetimes of 0.41 and 123.4 ms at room temperature (300 K),
respectively, and their lifetime increased with the decreased tem-
perature from 300 to 50 K [Figs. 4(d) and 4(e)]. These results
support their nature of phosphorescence. The calculated energy
gap between T2 and T1 was 0.27 eV, indicating the nature of
thermally mixed two states. The higher-energy T2 showed an
ðn; π�Þ transition character, while the lower-energy T1 was dom-
inant with a ðπ; π�Þ transition character. The transition oscillator
strength (f) of T2 (1.08 × 10−6) is much larger than that of
T1 (0.37 × 10−6), leading to an experimental short lifetime of
T2 and long lifetime of T1 [Fig. 4(f)]. As a result, two radiative
decay channels generated the white-color emission through
balancing two emissions of phosphorescence with anti-Kasha’s
behavior.

2.4 Clusteroluminescence

Being different from traditional emissive compounds based on
through-bond conjugation (e.g., double bonds, triple bonds,
and aromatic rings), many nonconjugated or poorly conjugated
molecules, such as polystyrene and maleimide, also emit visible
light in the aggregate state although they are nonemissive in

Fig. 3 (a) PL spectrum of organic salt, TPO-Br, under room temperature; (inset) chemical struc-
ture of TPO-Br. (b) The CIE chromaticity coordinate of emission from TPO-Br film. (c) Single-
crystal structure of TPO-Br and its anion–πþ interactions. (d) The theoretically calculated energy
diagram and spin-orbit couplings (ξ) between singlet and triplet states of TPO-Br based on the
optimized ground-state geometry using the ONIOM method. Figures are reproduced with permis-
sion from Ref. 63.
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the solution.82–84 This unconventional photophysical process
is termed as clusterization-triggered emission (CTE) and the
corresponding emission is known as clusteroluminescence.85,86

Previous studies suggested that strong intermolecular and intra-
molecular interactions play vital roles in clusteroluminescence.
Electronic delocalization and coupling between electron-rich
groups (e.g., carbonyl, hydroxyl, and sulfhydryl groups) can
generate new emissive species and stabilize excitons to produce
such clusteroluminescence.58,87 These new species usually pro-
duce emission with a longer wavelength than the intrinsic short-
wavelength emission of the electron-rich groups from through-
bond conjugation.

With the idea of clusteroluminescence, it is possible to pro-
duce multicolor emission from such nonconjugated compounds
based on their different through-space interaction (TSI) proper-
ties in the clustered state, which could eventually achieve white-
light emission.88–91 Zhang et al. synthesized a linear siloxane-
based poly(hydroxyurethane) (PHU) that contained carbonyl,
hydroxyl groups, and ether bonds [Fig. 5(a)].92 The twisted
and entangled chains in the aggregate state allowed these elec-
tron-rich groups to approach each other and formed electronic

delocalization through multiple hydrogen bonds and ðn; π�Þ
transition. Therefore, PHU film fabricated by rotary coating
showed excitation-dependent and strong visible-range emission
with 52% of blue-to-red color within the whole spectra,
suggesting the high conversion efficiency from UV light to
white-light emission [Fig. 5(b)]. As discussed above, this
visible-range emission originated from TSI of delocalized
electrons, which was assisted by multiple intermolecular
and intramolecular interactions. As expected, the counterpart
of PHU without side hydroxyl groups was nonemissive,
suggesting the importance of such electron-rich groups to
clusteroluminescence. Fortunately, a white-light emitter with
a CIE coordinate of (0.33, 0.38) was achieved when the
PHU was coated on a 365-nm UV lamp. Its emission spectrum
covered the whole visible range with two peaks at 476 and
550 nm, which was attributed to the CTE from PHU clusters
with different TSI [Figs. 5(c) and 5(d)]. It is noteworthy that
this white-light emitter was comparable with a commercial
white LED in terms of its correlated color temperature of
5681 K, high luminance of 8222 cdm−2, and color rendering
index of 83.

Fig. 4 (a) Chemical structure of ClBDBT and luminescent photos of its powder with or without
irradiation of 365 nm UV lamp. (b) Experimental and calculated PL spectra of ClBDBT powder.
(c) The CIE chromaticity coordinate of emission from solid ClBDBT. (d) PL decay curve of the
short-wavelength emission (λem ¼ 467 nm) under different temperatures. (e) PL decay curve
of the long-wavelength emission (λem ¼ 551 nm) under different temperatures. The excitation
wavelength is 365 nm. (f) Adiabatic energy diagram and oscillator strength between two triplet
states and ground state calculated at (TD) B3LYP/6-31(d)/GAFF level. Figures are reproduced
with permission from Ref. 81.
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3 Multicomponent Strategy
Compared with single-component strategy, multicomponent
strategy provides a facile way to achieve white-light emission
based on luminescent materials with different colors.93,94

However, traditional multicomponent strategy is to mix fluoro-
gens with several emissive colors (e.g., blue + green + red or
green + yellow) together, especially for inorganic emitters.
Besides, some systems based on organometallic emitters and
an energy transfer process between two emitters were success-
fully achieved for white-light emission.95,96 Hence, this method
faces a severe challenge of phase separation, which makes them
with a short lifetime, unstable color, and unexpected practical
problems. Compared to inorganic and metal materials, pure or-
ganic molecules usually show better compatibility. Therefore,
several methods such as trace doping, host-guest-based com-
plexation, and cocrystallization can generate a homogeneous
phase in the solid or aggregate state, which overcomes the

difficulties that multicomponent strategies faced. In this section,
we will draw a mechanistic picture of those multicomponent
strategies with typical examples.

3.1 Doping

For organic AIEgens, it is possible to achieve full-color lumi-
nescence in the solid state by blending emitters with different
colors. Moreover, flexible and similar conformation can in-
crease the compatibility of the mixture. Zhu et al. synthesized
three perchalcogenated arenes that contained O (Arene-O),
S (Arene-S), and Se (Arene-Se) atoms and displayed blue,
green, and red colors, respectively [Figs. 6(a)–6(d)].97 The lumi-
nescence from Arene-S and Arene-Se was phosphorescence
due to the heavy-atom effect, while that from Arene-O was
assigned to fluorescence. The three luminescent primaries were
utilized to construct a white-light emitter with a CIE coordinate
of (0.27, 0.34) by incorporating them together with the molar

Fig. 5 (a) Chemical structures of linear CO2-derived PHU and schematic diagram of intermolecu-
lar and intramolecular interactions of solid PHU. (b) PL spectra of solid PHU with different
excitation wavelengths from 280 to 440 nm. (c) PL spectra of the white OLED fabricated by
PHU and UV chip; (inset) PL spectra of the UV chip. (d) The CIE chromaticity coordinate of emis-
sion and luminescent photo of the white OLED. Figures are reproduced with permission from
Ref. 92.
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Fig. 6 (a) Chemical structures and luminescent photos of the perchalcogenated arenes, where X
stands for the element of O (Arene-O), S (Arene-S), and Se (Arene-Se), respectively. (b)–(d) PL
spectra of three arenes in the solid state. (e) PL spectrum and luminescent photo of the solid
mixture of Arene-O, Arene-S, Arene-Se with the molar ratio of 300:1:3. Figures are reproduced
with permission from Ref. 97. (f) Chemical structure and preparation of white light-emitting silk
through bioconjugation with TPE-pyo (blue), MTPEP-pyo (green), and MTPABP-pyo (red) at a
molar ratio of 88:6:6. (g) PL spectrum and the CIE chromaticity coordinate of the fabricated white
light-emitting silk. Figures are reproduced with permission from Ref. 98.
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ratio of 300:1:3 (Arene-O:Arene-S:Arene-Se) [Fig. 6(e)]. The
powder X-ray diffraction spectra showed that the fabricated
white emitter was crystalline, also indicating their good compat-
ibility.

Apart from the above method of simply mixing multicolor
materials to achieve full-color luminescence, incorporating
multicolor fluorogens on a nonemissive matrix through chemi-
cal bonding provides another chance for white-light emitting
materials. For instance, Tang et al. successfully fabricated white
light-emitting silk through bioconjugation in 2021.98 Three typ-
ical AIEgens (namely, TPE-pyo, MTPEP-pyo, and MTPABP-
pyo) with three primary RGB colors were fixed in natural silks
by chemical bonds formed between activated alkynes of
AIEgens and amine groups of silks [Fig. 6(f)]. Each AIEgen
emitted its intrinsic color in the fabricated silk and finally made
up white-color emission with a CIE coordinate of (0.33, 0.36)
[Fig. 6(g)]. Compared with traditional fluorescent dyes physi-
cally absorbed by the matrix, this doping method provides
higher color retention and stability in the basic environment
through chemical bonding, suggesting its potential advantages
in silk fabrics and other applications utilized in harsh envi-
ronments.

The doping strategy of two or more components also sug-
gests a new insight on creating new photophysical behaviors
that cannot be produced by themselves, which is different from
utilizing their intrinsic luminescence as discussed above.58 With
the development of RTP from single-component organic mole-
cules, trace dopant (even at part-per-billion level) in the non-
RTP matrix plays a special role in producing new emissive
species of RTP, resulting in dual emission of fluorescence
and phosphorescence in such multicomponent systems.99,100

It also creates a chance to realize white-light emission similar
to the single-component system with features of fluorescence
and phosphorescence. Based on this consideration, Lei et al.
realized a white-light emitting material by doping IQL-nCz

(as the dopant) into benzophenone (BPO, as the matrix) with
a molar ratio of 1:1000 [Fig. 7(a)].101 In this system, the intrinsic
fluorescence from the dopant located at 460 nm and a newly
emerged phosphorescent peak located at 570 nm were observed,
and the intensity ratio between two peaks was excitation-wave-
length dependent [Fig. 7(b)]. Under excitation of a 370-nm UV
lamp, a nearly pure white-light emission was noticed with a CIE
coordinate of (0.32, 0.32) [Fig. 7(c)]. A general working scheme
for this process is drawn in Fig 7(d). Due to multiple inter-
molecular interactions between the dopant and matrix, it was
believed that an IQL-nCz molecule was surrounded by several
BPO molecules and generated clusters. Upon excitation, these
clusters are excited and form transient cluster excitons, as evi-
denced by the different excitation spectra of the doped material
compared with that of dopant and matrix. Some excitons radi-
atively relax to the ground state from the central dopant in the
form of fluorescence. In addition, through the ISC process and
energy transfer from cluster to the dopant, other excitons rapidly
decay to the more stable triplet state and the excited-state energy
is finally “trapped” by the dopant, resulting in long-lifetime
phosphorescent emission.58,102 This doping method is now at-
tracting more attention to extend the scope of RTP materials
with functionality.103,104

3.2 Supramolecular Assembly

Inspired by nature, supramolecular assemblies have been rap-
idly developed as a great platform for advanced materials due
to the well-defined conformation and fascinating topological
structures, which are constructed by noncovalent intermolecular
interactions. After adding functional units into the cavities of
building blocks or utilizing building blocks with unique features,
multifunctional host–guest systems can be constructed.105–107

Therefore, the introduction of luminescent materials to the
building blocks endows an opportunity to achieve white-light

Fig. 7 (a) Chemical structures of BPO as the matrix and IQL-nCz as the dopant. (b) PL spectra of
the IQL-nCz/BPO-doped material with a molar ratio of 1:1000 under different excitation wave-
lengths. (c) The CIE chromaticity coordinate of the IQL-nCz/BPO-doped material under different
excitation wavelength; (inset) luminescent photo taken under an excitation wavelength of 370 nm.
Figures are reproduced with permission from Ref. 101. (d) Schematic mechanism of excitation and
decay processes of this kind of dopant/matrix system. FL, fluorescence; ISC, intersystem cross-
ing; RTP, room-temperature phosphorescence. Figures are reproduced with permission from
Ref. 58.

Zhang et al.: White-light emission from organic aggregates: a review

Advanced Photonics 014001-9 Jan∕Feb 2022 • Vol. 4(1)



emission, where the problem of phase separation of multi-
component materials is also resolved by the regular-shaped
packing in the solid state.108–110 For example, a twisted and
AIE-active tetraphenylpyrazine (TPP) structure was immobi-
lized to construct the building blocks (TPP-Cage) that showed
obvious chirality and blue emission in the solution state
(Fig. 8).111 Due to its large cavity, an ACQ-active diketopyrro-
lopyrrole (DPP) as the guest was encapsulated to form
DPP@TPP-Cage complex. Since the π − π stacking was
blocked by the TPP-Cage, DPP emitted yellow light in the cav-
ity of such complexes. As a result, companying with the com-
plementary blue color from the host of TPP-Cage, white-light
emission was achieved in the aggregate and poly(ethylene gly-
col) film with a CIE coordinate of (0.36, 0.33). In addition, this
fabricated white-light-emitting film exhibited good stability
with its emission color hardly changing after placing at atmos-
pheric conditions for 30 days. Similarly, Ni et al. reported a
study on utilizing nonemissive cucurbituril[7] (Q[7]) and cucur-
bituril[8] (Q[8]) with different cavity sizes to anchor oligo(p-
phenylenevinylene)-based cationic dye (G1). Q[7] was able
to accommodate one G1 molecule and emitted blue color, while
the cavity of Q[8] accommodated two molecules of the dye and
produced yellow emission, respectively. Therefore, combining
the above two complexes, white light-emitting with a CIE co-
ordinate of (0.33, 0.36) was realized in this macrocycle-assisted
supramolecular system.112

Since the structural diversity of guest and host molecules,
supramolecular assembly becomes a platform for solid-state

white-light emitters (crystal, powder, film, hydrogel, etc.).106,113

In addition, the white light of these host–guest systems origi-
nates not only from dual fluorescence but also from fluores-
cence and phosphorescence.114

3.3 Cocrystallization

Organic cocrystals, which are formed by two or more organic
molecules with defined packing arrangements in the crystalline
state, are gaining increased attention for crystal engineering and
applications.115–118 Apart from the sum of molecular properties,
it is possible to create new chemical and physical behaviors
through noncovalent intermolecular interactions (hydrogen
bonding, halogen bonding, π − π interaction, etc.) within
cocrystals. For example, researchers successfully utilized the
strategy of cocrystals for transforming ACQ-active molecules
to AIE active119–121 and endowing cocrystals with self-healing
and thermomechanical responses.122 RTP is also realized within
cocrystals through regulating excited states and the ISC process,
which may give another way to realize white-light emission.123

With the consideration that halogen bonding can enhance
the spin-orbital crossing (SOC), 1,4-diiodotetrafluorobenzene
(DITFB) and 1,7-phenanthroline (PR) were used to build
cocrystals with intermolecular halogen bonds.124 Three crystals,
namely P1D0, P2D1, and P1D1, contained an adjustable stoi-
chiometric ratio between PR and DITFB of 1:0, 2:1, and 1:1,
respectively, which displayed different emission properties
under UV illumination. Especially, P2D1 produced white-light

Fig. 8 (Upper panel) Chemical structure of the AIE-active luminogen of TPP and crystal structure
of chiral building block based on TPP. (Lower panel) Preparation of the DPP@TPP-Cage com-
plex, crystal structure of DPP@TPP-Cage complex with white emission, and the CIE chromaticity
coordinate of emission from DPP@TPP-Cage in poly(ethylene glycol) film deposited on a UV
flashlight. Figures are reproduced with permission from Ref. 111.
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emission in the crystalline state [Figs. 9(a) and 9(b)]. The PL
spectra of P2D1 showed one fluorescent peak at 470 nm and
another phosphorescent emission around 550 to 650 nm, which
formed white light with a CIE coordinate of (0.31, 0.31). From
crystal analysis of P2D1, it was obvious that each PR molecule
connected with one DITFB through a strong N⋅⋅⋅I halogen bond
and communicated with another DITFB through a compara-
tively weak H⋅⋅⋅F interaction, which finally helped to increase
the strength of the SOC [Fig. 9(c)]. Those multiple intermolecu-
lar interactions also stabilized the excited state and promoted
the small energy differences between the lowest singlet state
(S1) and multitriplet states (Tn). As a result, the rate of ISC
(KISC) of 1.60 × 109 s−1 was nearly 16 times larger than the rate
of fluorescence (KFI) of 9.49 × 107 s−1. Cocrystal P2D1 finally
displayed white-light emission with balanced fluorescence and
phosphorescence [Fig. 9(d)]. On the contrary, P1D0 without

intermolecular halogen bonds only showed fluorescence, while
P1D1 with much stronger halogen-bonding interactions and
an SOC ability exhibited pure phosphorescent emission. By pre-
cisely modulating intermolecular interactions and excited states,
cocrystallization is verified as a potential platform to generate
homogeneous phases for white-light emission and optical appli-
cations.

4 Applications of Organic White-light
Aggregates

Along with the advances in design strategy and mechanistic elu-
cidation of white-light emission from organic aggregates, much
attention has been paid to the development of applications.
Apart from white-light emission with adjustable color rendering
index and color temperature, organic materials with luminescent

Fig. 9 (a) Schematic illustration and luminescent photos of cocrystals formed by cocrystallization
of PR and DITFB with molar ratios of 1:0 (P1D0), 2:1 (P2D1), and 1:1 (P1D1), respectively. (b) PL
spectra of three cocrystals and their CIE chromaticity coordinates. (c) Single-crystal packing
of P2D1 viewed along the ac plane. (d) Jablonski diagrams of P2D1 cocrystal with theoretically
calculated energy levels and rate constants calculated from experimental data. Figures are repro-
duced with permission from Ref. 124.
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properties in the aggregates also exhibited the advantages of
low cost, excellent flexibility, compatibility, and environmental
friendliness for practical applications. Here, some organic
white-light emitters are highlighted for their potential values.

(1) Organic light-emitting diode (OLED): With the basic
property of luminescence, luminescent materials are widely uti-
lized on displaying, lighting, traffic, and flexible devices.125–128

White-light emitters whose emissive color is close to natural
sunlight are good candidates to construct white OLEDs.
According to some strategies discussed in this review, single-
component and multicomponent white OLEDs are fabricated.129

For example, in consideration of the coexistence of two confor-
mational isomers in the crystalline state, 2PQ–PTZ was verified
as a white-light emitter. Therefore, it was utilized to fabricate a
single-component white OLED with a maximum brightness of
6017 cdm−2 and an external quantum efficiency of 10.12%.45

A two-emissive-layered and nondoped white OLED was also
fabricated based on two tetraphenylethene derivatives, namely
TTPEPy and BTPETTD [Fig. 10(a)]. Two layers showed
bluish-green and red color, respectively, and the final white-light
device possessed a brightness of 18,000 cdm−2 and an excellent
color rendering index of 90.130 Meanwhile, AIEgens-based
OLEDs possess a reduced efficiency roll-off, and their emissive
color can be easily adjusted through methods such as structural
modification and device fabrication. Moreover, some white
OLEDs are compatible with commercial devices and show great
potential for wearable devices.132–134

(2) White luminescent dye: Compared with inorganic phos-
phors, organic molecules with functional groups can easily con-
nect with other materials through chemical bonding. As a result,

white-emitting silk fabrics were successfully achieved through
mixing natural silks with three dyes showing primary colors
[Figs. 10(b), left].98 The formed chemical bonds between silk
fabrics and dyes endowed them with excellent color stability
that was resistant to washing. Also, the flexibility of organic
materials supports them as three-dimensional (3D) printing
materials for the fabrication of some objectives with various
shapes. As a demonstration, TPO-Br was utilized to build lamp-
shades through 3D printing technology [Fig. 10(b), right].63

In addition to bright white-light emission under UV lamps, this
lampshade was transparent under daylight and showed a low
weight.

(3) Circularly polarized luminescence (CPL): Some phe-
nomena that are hardly accessible in isolated molecules would
become obvious in the aggregate state, suggesting multifunc-
tionality of aggregates such as bright emission, chirality,
RTP, and delayed fluorescence.17 CPL, as a key factor related to
the origin of chirality, provides luminescence with another
intriguing property of polarity.135 For white-light emitters with
CPL property, they can be widely utilized in advanced technol-
ogies including visible-light communication, data storage, 3D
displays, etc. In 2019, Tang et al. developed a facile method to
achieve CPL by incorporating achiral AIEgen, namely, 9,10-
bis(diphenylmethylene)-9,10-dihydroanthracene (PDHA), with
helical polymer poly(L-lactide) (PLLA). Due to the chiral nature
of PLLA, the solid-state lamellae were left-handed twisting, and
the formed spiral spherulites with a helical superstructure had
an intrinsic ability for CPL modulation. In addition, amorphous
and crystalline PDHA aggregates embedded in the polymer

Table 1 Summarized emission properties of all compounds mentioned in this review.

Strategy Compound State
Emission max.

(nm)
Quantum

(%)
CIE

coordinate Ref.

Dual fluorescence DPAC-Tri(o1,2) Doped in polyTHF 435/610 6.8 (0.28, 0.25) 45

o-CP Crystal 410/557 46.0 (0.33, 0.36) 50

CPzPO Crystal/film 459/564 36.1 (0.31, 0.32) 53

Fluorescence and phosphorescence TPO-Br Crystal 434/549 36.6 (0.32, 0.33) 63

Dual phosphorescence ClBDBT Crystal 467/551 7.2 (0.33, 0.35) 81

Clusteroluminescence PHU Film 476/550 — (0.33, 0.38) 92

Doping Arene-O Crystalline film 500/580 8.0 (0.27,0.34) 97

42.0aArene-S

21.0aArene-Se

TPE-pyo Doped in silk 482/595 14.1b (0.33, 0.36) 98

MTPEP-pyo 22.2b

MTPABP-pyo 6.6b

IQL-nCz/BPO Powder 460/570 75.8/33.7c (0.32, 0.32) 101

Supramolecular assembly DPP@TPP-
Cage

Aggregate or film in PEG 430/535 — (0.36, 0.33) 111

Q[7]/G1 Solid mixture 487/580 — (0.33, 0.36) 112

Q[8]/G1

Cocrystallization P1D1 Crystal 470/550 16.6 (0.31, 0.31) 124
aThe absolute quantum yield of pure compound in the solid state.
bThe absolute quantum yield of pure compound doped in natural silk.
cThe absolute quantum yield of whole emission under excitation of 400 nm and phosphorescent emission under excitation of 370 nm.
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emitted yellow and blue light, finally resulting in white-light
CPL [Fig. 10(c)].131

(4) Encryption: Information safety becomes more and more
important with the development of the digital era. Light, as one
kind of signal with versatile features, is a good candidate for
the information transformation and anticounterfeiting. Emitters
with dual fluorescence and phosphorescence are superior to
traditional fluorescent materials since their two emissive
channels have different colors and lifetime.54 Therefore, many
organic white-light emitters with RTP can fulfill the demand
for high-level encryption. For instance, by mixing 0.1%

isoquinoline derivatives (IQL-Ph and IQL-TPA) into BPO, an
organic-doped system was established with multiple properties
of white-light emission, RTP, and excitation-dependent tunable
color.101 Two doped BPO materials were dissolved in solution
for use as inks. As shown in Fig. 10(d), IQL-TPA/BPO was
utilized to draw cranes and IQL-Ph/BPO was used for depicting
flowers. The color of the two cranes was white under 370 nm
excitation, while all flowers were cyan color. After ceasing the
excitation source, all paintings showed a bright yellow after-
glow. It demonstrates the potential capability of this doped
system as writable ink for information encryption.

Fig. 10 Examples of application of organic white-light emission materials. (a) (Left) Chemical
structure of 2PQ-PTZ and device photo of a single-component OLED that is realized by conforma-
tional isomerization of 2PQ-PTZ. Figures are reproduced with permission from Ref. 45. (Right)
Chemical structures of TTPEPy and BTPETTD and photos of an OLED constructed from them
that shows green and red colors, respectively. The white OLED was constructed from two com-
ponents of TTPEPy and BTPETTD with each thickness of 10 nm. Figures are reproduced with
permission from Ref. 130. (b) (Left) White fluorescent silk fabric fabricated through bioconjugation
between natural silk and AIEgens of TPE-pyo, MTPEP-pyo, and MTPABP-pyo. Figures are
reproduced with permission from Ref. 98. (Right) Photos of 3D-printed lampshades without and
with TPO-Br taken under daylight and 365 nm UV lamp. Figures are reproduced with permission
from Ref. 63. (c) Schematic illustration of 3D spiral banded spherulite doped with PDHA aggre-
gates and its mechanism for white CPL. Figures are reproduced with permission from Ref. 131.
(d) Luminescent images drawn with IQL-Ph and IQL-TPA doped BPO under (left) and after (right)
irradiation of a UV lamp with 370 nm wavelength, which can be utilized for information encryption.
Figures are reproduced with permission from Ref. 101.
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5 Conclusions and Perspectives
In this review, from the perspectives of single-component and
multicomponent systems, we have discussed the recent progress
of the development of white-light emission using organic
molecules in the aggregate state. The key point is to produce
polychromic emissions simultaneously and balance the ratio be-
tween them to achieve white-light emission. From the viewpoint
of a single-component strategy, organic aggregates with proper-
ties of dual fluorescence from two singlet states, balanced fluo-
rescence and phosphorescence, dual phosphorescence with anti-
Kasha’s behavior, and clusteroluminescence were successfully
utilized to achieve white-light emission. On the other hand,
a multicomponent strategy, including doping, supramolecular
assembly, and cocrystallization, synergistically combines sev-
eral compounds for producing white light. Among all strategies,
aggregate behavior plays a vital role: a rigid environment real-
ized through intermolecular interactions in the aggregate state
greatly blocks nonradiative decay and promotes radiative emis-
sion. Also, aggregate provides a platform for polychromic lumi-
nescence and balanced emissions with different wavelengths
to achieve white-light emission. Some unique photophysical
behaviors, such as RTP, clusteroluminescence, and CPL, emerge
in aggregates and provide more interesting phenomena and
mechanistic insights. Therefore, apart from precise molecular
design and synthesis, the behavior of organic molecules in the
aggregate state should be carefully considered in future work,
including structure–property relationship at the aggregate level,
characterization, and control of aggregate morphology.

We also highlighted some advanced applications of white-
light emission from organic aggregates, showing potentials
for next-generation luminescent materials. Single-component
strategy and good compatibility of multicomponent strategy
resolve the challenge of phase separation of traditional inorganic
materials. In addition, the flexibility of organic materials
indicates their potential applications on flexible devices, which
may further endow them with applications for display and
illumination.136,137 Although many successes of pure organic
white-light emitters have been achieved, their performance is
still far behind those inorganic and organometallic emitters in
terms of brightness, efficiency, quality of color, device fabrica-
tion, etc. In addition, due to their morphology-dependent prop-
erties, the control and optimization of morphology during
device fabrication and application is another consideration.
Therefore, they are far from being widely utilized in our daily
life, and many existing issues need to be further addressed.

Last, but not least, the development of modern computational
methodologies makes it possible to illustrate photophysical
processes of single molecules and aggregates, providing mecha-
nistic understandings and rational design of white-light emitters.
However, as the diagram shifts from molecular science to
aggregate science, present computational methods are unable
to accurately describe inherent luminescent mechanisms at
the level of aggregate, especially for intermolecular interactions
and electron delocalization. From this perspective, multiscale
computational approaches and even artificial intelligence tech-
nology are needed to dig the nature of aggregates and extend the
scope of organic white-light emitters. As a branch of aggregate
science, organic aggregates with white-light emission show
their values for advanced materials and underlying mechanisms
of photophysics. We believe that the future road for practical
applications is challenging and rewarding.
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